

LMATIETEEN LAITOS Meteorologiska institutet Innish meteorological institut

From EO Services to carbon cycle modeling support

Kristin Böttcher, Pekka Härmä, Markus Törmä, Sari Metsämäki and Olli-Pekka Mattila

Finnish Environment Institute

- Land cover data for carbon balance modeling
- Model validation with satellite information
 - Snow cover
 - Start of the growing season

Land Cover Data - Background

- Land cover/ land use affect the regional climate (REMO) by affecting the surface meteorology and hydrology
 - The effects are described with surface parameters
- Land cover/ land use affect the carbon cycle (JSBACH) through different vegetation types
 - Described by plant functional types
- In the standard version of REMO model, land cover is described using Global Land Cover Characteristics Database (USGS, 1997) according to definitions by Olson (1994a, 1994b)
 - Old Global data set: Based on EO data received in early 1990
 - Used also in **JSBACH** model for spatial distribution of plant functional types (PFTs)

Updated land cover/land use distribution needed for Northern Europe

U.S. Geological Survey, 1997. Global land cover characteristics data base <u>http://edc2.usgs.gov/glcc/glcc.php</u>

Olson, J. S. 1994a. Global Ecosystem Framework 1. Definitions. Report GPC94.1, USGS

Olson, J. S. 1994b. Global Ecosystem Framework 2. Translation Strategy. Report GPC94.2, USGS.

- Comparison of class descriptions in different data sets
 - Global Land Cover Characteristics/ Olson classification (AVHRR)
 - Clustering of MODIS products
 - GLOBCOVER V2.2 (MERIS)
 - European CORINE Land Cover (CLC2000,CLC2006)
 - Finnish National CORINE Land Cover
- Comparison of surface parameters of Olson classes with local data covering Finland

→ The combination of Finnish National Corine, European Corine Land Cover and GlobCover was selected for describing the land cover in Northern Europe.

Effects of Land Cover on Carbon Balance

- Comparison of mean annual carbon balances for years 2001-2009 –Olson classification and combination of National / European CORINE land cover and GlobCover:
 - Domination of Boreal coniferous forest \rightarrow largest carbon uptake
 - Alternative land cover dataset produced more release of carbon, especially in the area of Baltic Countries and Belarus

Model validation with satellite information - Background

- Sparse observation network for validation of model results
- Need to generalize information provided by *in situ* sites
- Provide time-series of vegetation indices and snow cover for the evaluation of the performance of JSBACH model
- Assessment of snow-related variables of JSBACH
- Definition of proxy indicators for ecosystem functioning (e.g. start of growing season) from remote sensing data

Satellite time-series

- Processing of daily time-series of satellite-indices derived from Terra/ Moderate Resolution Imaging Spectrometer (MODIS) 2001-2010
 - Normalized Difference Vegetation Index (NDVI), 250 m
 - Normalized Difference Water Index (NDWI), 500 m
 - Snow Covered Area (SCA), 500 m

Comparison of model output and RS data

- Model produced snow cover was compared with satellite snow information
 - The spring melting produced by the model is late, when comparing to satellite derived snow information

→ Something wrong with surface meteorology or insufficient description of snow processes?

→ Needs to be considered in the interpretation of results and in the development of the model.

Extraction of start of season

- Spring vegetation phenology is important parameter influencing the terrestrial carbon balance (Richardson et al. 2010)
- Existing methods for satellite-retrieval of greening-up
- Photosynthetic recovery in evergreen coniferous forest occurs before canopy changes
- Aim to develop new satellite-derived start of season indicator calibrated to *in situ* observations at CO₂ flux measurement sites

In situ observations for the start of season

- Reference dates for onset of growing season for coniferous forest determined from CO₂ flux measurements
- A fixed fraction of peak growing season gross primary production (GPP) was used as a threshold value for the growing season onset (start of flux growing season, FGS)

Sodankylä: Coniferous forest

Temporal profiles February - July 2006 at Sodankylä

- (a) Mean Snow Covered Area and interpolated profile;
- (b) Snow depth measurement station Sodankylä;
- (c) Mean NDVI and smoothed profile;
- (d) Mean NDWI and linear interpolated profile.

 Onset of growing season in coniferous forest coincides with decrease of fractional snow cover and beginning of springrise of NDVI

Start of season 07.05.2010

Satellite-derived start of season

 Comparison of satellite-derived start of growing season for evergreen coniferous sites with *in situ* dates

FGS: Flux Growing Season. Doy: day of year.

Maps of the start of season

- Extraction of start of season based on SCA for pixels with dominance of coniferous forest
- Aggregation of results for comparison with JSBACH land surface model-derived start of season

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUT

Indirect model validation

- Model produced start of season was compared with dates extracted from satellite data for years 2003-2008:
 - The correlation between the two datasets was good (r²=0.91), arising from good agreement in the spatial domain, but there is a systematic delay of ~ 2 weeks in the start of the growing season.

Mean start of season for years 2003-2008. REMO-JSBACH Modeling results (top-left). SCA derived start of season (top-right). Correlation between the two (bot-left).

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUT

- Satellites can provide important information for generating up-todate land cover information for supporting carbon balance modeling.
- Satellite derived surface parameters can be used to validate internal processes in the models to find ways of improving the process descriptions, e.g. the dynamics of snow cover.
- Satellite datasets can provide proxy information on the performance of the model, both in temporal and spatial scales.