

LIFE Project Number ENV/FIN/000133

1st Data document

Reporting Date **31/12/2009**

Action Action Action 4 – In situ data collection and processing by FMI

LIFE+ PROJECT NAME or Acronym **SNOWCARBO**

Author					
Name Beneficiary	Finnish Meteorological Institute (FMI)				
Contact person	Mika Aurela				
Postal address	P.O.Box 503, FI-00101 Helsinki, Finland				
Telephone	+358-9-19295511				
Fax:	+358-9-19293503				
E-mail	Mika.Aurela(at)fmi.fi				
Project Website	http://snowcarbo.fmi.fi				

Table of contents

Table of c	contents	2
List of ab	breviations	2
1 Sum	mary	
2 Data	۱	
2.1	Gridded data	
2.2	Validation data	6
2.2.1	Flux measurements	6
2.2.2	2 Concentration measurements	
Reference	2S	9

List of abbreviations

COSMOS	Community Earth System Models (network for earth system modelling)
EC	Eddy Covariance (micrometeorological technique)
FMI	Finnish Meteorological Institute
MPI-M	Max Planck Institute on Meteorology, Hamburg
JSBACH	Jena Scheme for Biosphere-Atmosphere (model describing biosphere- atmosphere interaction)
ECHAM5	European Centre Hamburg Model (global circulation model, atmosphere)
REMO	Regional climate model

1 Summary

This report describes the data used for running and evaluating the climate models. Two different data sets are prepared for these purposes. The input data, i.e. the gridded data set, are collected from various global data sources and they are synthesised to global grids. The validation data (i.e. the *in situ* data set) such as, CO₂ fluxes and concentrations, have routinely been measured at stations maintained by FMI for several years. The former is used as boundary and initial conditions for model runs, whereas the latter will be facilitated in assessing the reliability of the model predictions.

The models facilitated in SNOWCARBO project are regional climate model (REMO2008), global circulation model (ECHAM5) and the ecosystem model (JSBACH) describing the CO_2 circulation within various ecosystems and soils and its exchange between the surface and the atmosphere. All these models belong to COSMOS model family which is developed by Max Planck Institute, Hamburg. While the project aims at estimating the terrestrial ecosystem CO_2 source and sink strengths with detailed process models, for reliable balance of CO_2 , its exchange by oceans and fossil fuel sources have to be prescribed with appropriate emission data bases. Furthermore, both models need to be initialised and the regional model continuously forced from the domain boundaries with observed weather data. Additionally, in order to keep the weather similar to the actual one the models can be nudged with gridded meteorological data.

In order to estimate the performance of the models, CO_2 fluxes and concentrations they predict will be compared to point measurements at certain sites located at Boreal ecosystems. Data characteristics of the measurement sites maintained by FMI together with data availability and general data quality will be given in this report.

2 Data

2.1 Gridded data

The input data set needed for weather and tracer transport simulations consists of initial and boundary forcing data. This input data for the models (REMO2008, ECHAM5 and JSBACH) are given in the form of meteorological fields and as maps of surface properties. In addition to the standard meteorological fields such as air temperature, liquid water content and 3D velocity fields, also needed for estimating CO₂ balance are the initial atmospheric CO₂ concentration fields, fire information, anthropogenic sources and sea ecosystem CO₂ balance. Various possibilities for the initial and boundary forcing data fields were explored. The selected data sources are presented in Table 1. Below the table, a more detailed description of the contents of each data and address of the database are given. As the all the boundary and initial data needs to be processed from observations to gridded form most resent years are always lacking from the data series. Nevertheless, most of the data is collected from ongoing projects and consequently the various data bases will be updated as soon as new data is available. Presently all the collected boundary data extends at least up to year 2005.

Table 1. Datasources of the initial and boundary forcing data for the models (REMO2008, ECHAM5 and JSBACH)

Name of the	Course marridan	In aludad data	I imitationa/	Smotial/Time	Time
Name of the	Source, provider		Limitations/	Spatial/Time	Time
dataset		types	Drawbacks	resolution	coverage
EDGAR4.0	European	Surface fluxes	Limited time	0.1	2001-
	Commission Joint	due to fires and	coverage	Annual	2005
	Research Centre and	anthropogenic			
	the Netherlands	sources			
	Environmental				
	Assessment Agency				
TM3	TM3 model results	3D concentration	No obvious	1.875°	2001-
	from The	fields due to all	drawbacks	Six-hourly	2007
	Atmospheric Tracer	the relevant		2	
	Transport Model	surface fluxes			
	Intercomparison				
	Project (TransCom)				
	Christian Rünebeck				
CarbonTracker	National Oceanic and	3D concentration	Coarse	4°-6°	2001-
Curbon mucker	Atmospheric	fields due to all	resolution for	Three-	2001
	Administration US	the relevant	Furone	hourly	2007
	Department of	surface fluxes	Europe	nourry	
	Commorce Clobel	surface muxes			
	Monitoring Division				
<u> </u>	Wonttoring Division	2D ()	T · · · · 1 · ·	10	2007
Carbon Fracker	Wageningen	3D concentration	Limited time		2007
Europe	University	fields due to all	coverage	Three	
		the relevant		hourly	
		surface fluxes			
ECHAM5	Existing general	3D concentration	Does not	Approx. 2°	2001-
	circulation model	fields and	represent real	Six-hourly	2006
	runs with the MPI	meteorology	years. No		
	global model		anthropogenic		
	presently possessed		or oceanic		
	by FMI		sources.		
ECMWF	European Centre for	Detailed	No obvious	Processed	2001-
analysis data	Medium Range	meteorology	limitations	into 0.167°	2008
5	Weather Forecast	derived from		grid	
		observations		Six-hourly	
Takahashi	Carbon Dioxide	Oceanic CO2	No	$4^{\circ} \times 5^{\circ}$	Present
database	Information and	fluxes	limitations	-	(2000)
	Analysis Center				()
	(CDIAC) Oak				
	Ridge National				
	Laboratory				
1	Laboratory	1	1	1	

EDGAR 4.0 will be used as fossil fuel emission data source in this project. The Emissions Database for Global Atmospheric Research (EDGAR) provides gridded global past and present day anthropogenic emissions of greenhouse gases and air pollutants. The current development of EDGAR is a joint project of the European Commission JRC Joint Research

Centre and the Netherlands Environmental Assessment Agency (PBL). Presently the SNOWCARBO team possess all the years of EDGAR 4.0 CO₂ emission data presently available. The terms of condition include giving appropriate reference and acknowledging the EDGAR team according to the instructions at the EDGAR webpage: http://edgar.jrc.ec.europa.eu.

TM3 model results from The Atmospheric Tracer Transport Model Intercomparison Project (TransCom) will be used as CO₂ concentration boundaries. The concentration fields are only given for those years where atmospheric data are available to constrain the assimilation (presently up to 2006). Only in the last year some measurement records may end earlier, and the very last weeks may be affected by edge effects of the inversion. Therefore, fields from this year should be handled with more care. 3D concentration fields are provided as NetCDF files. The data is in parts per million [ppm] concentration units. Terms of use are given at the webpage: http://www.bgc-jena.mpg.de/~christian.roedenbeck/download-CO2-3D/.

CarbonTracker is an optional source for initial and boundary CO₂ fields in SNOWCARBO. CarbonTracker data may also serve as a comparison data set for the CO₂ balance predictions in the later stages of the project. Provided is the daily average of the pressure-weighted mean mole fraction of carbon dioxide in the free troposphere. Additionally, a Carbon Tracker Europe group of University of Wageningen, the Netherlands provides data for Europe with higher resolution than that of standard CarbonTracker (http://www.carbontracker.eu/). Available is data for year 2007 and earlier years can be made available upon request.

ECHAM5 coupled with its ecosystem scheme JSBACH would provide the regional model with most complete and internally consistent set of boundary and initial data as it contains both CO₂ concentration fields and complete meteorology. The ECHAM5 data that FMI presently posses, is forced merely with sea surface temperature (SST). Thus, even thought the climate it predicts is close to actual, the weather conditions do not match with observed ones. The use of runs as boundary for regional model runs is furthermore restricted by the lack of ocean and fossil fuel sources. At this stage of the project the existing ECHAM5+JSBACH simulation results of FMI will not be considered to be used as boundary data.

ECMWF (The European Centre for Medium-Range Weather Forecasts) operational data will be used for boundaries and initial fields of meteorology. ECMWF provides the WMO (World Meteorological Organisation) members various data products of which operational data and re-analysis data can be facilitated in climate modelling. MPI-M has provided the project with operational data pre-processed to the domain intended for regional model runs. Web pages of ECMWF: http://www.ecmwf.int/.

Ocean fluxes from so called Takahashi database will be used to prescribe oceanic CO_2 emissions. A climatological mean distribution for the surface water pCO₂ over the global oceans in non-El Niño conditions are presented with spatial resolution of 4° (latitude) x 5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO₂ obtained from 1970 to 2007 (Takahashi et al., 2009). Web pages of the project: http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/pages/air_sea_flux_2000.html http://www.ldeo.columbia.edu/res/pi/CO2/carbondioxide/air_sea_flux/month_flux_2006a.txt

2.2 Validation data

The validation data set is based on the CO_2 flux and concentrations measurements from various flux and concentration measurement stations of Finnish Meteorological Institute (Table 2). Longest running flux sites, Kaamanen wetland and Sodankylä Scots pine forest, provide data sets of about 10 years. Shorter multi-year flux data sets are available from a spruce forest and a wetland at Pallas area and several sites in southern Finland on peatlands in different agricultural and forestry use. The background concentration measurements are conducted at Pallas-Sodankylä GAW station.

Site	Vegetation type	Latitude/	.atitude/ Data		Vegetation
		Longitude	coverage	height (m)	height (m)
Sodankylä	Scots pine forest	67°21.712'N	Jun 1999	23.5	12–18
	-	26°38.270'E	onwards		
Kaamanen	Aapa mire	69°08.441'N	April 1997	5	0-0.5
		27°16.230'E	onwards		
Kenttärova	Spruce forest	67°59.234'N	Jan 2003	23	13
		24°14.583'E	onwards		
Lompolojänkkä	Aapa mire	67°59.832'N	April 2005	3	0-0.5
		24°12.551'E	onwards		
Alkkia, Karvia	Afforested peat	62°11.001'N	Sept 2002 -	18	12
	field, Scots pine,	22°47.008'E	July 2004		
	managed				
Kalevansuo,	Forestry drained	60°38.810'N	Aug 2004	21.5	15–18
Loppi	peatland, Scots	24°21.3'E	onwards		
	pine, managed				
Jokioinen	Agricultural peat	60°53.956'N	Oct 2000 -	3	0–0.6
	field, managed	23°30.933'E	July 2003		
Sammaltunturi	Sparsely	67°58.4'N	Oct 1996	565m.a.s.l.,	0-0.3
	vegetated fjeld,	24°06.967'E	onwards	4m above	
	low vascular			ground	
	plants, moss,				
	lichen				

Table 2.	Measurement	stations of	of Finnish	Meteorolo	gical Institute
1 0010 2.	measur entent	Signions C	j i muusu	1101001010	Sieur monnie

2.2.1 Flux measurements

The flux measurements are conducted by the eddy covariance (EC) technique which provides a direct measurement of the net exchange of CO_2 , water vapour and sensible heat between the biosphere and the atmosphere. In this technique the vertical flux of a scalar constituent is obtained as (e.g., Baldocchi, 2003)

 $F = \overline{w'c'}$,

(1)

where *w* is the vertical wind speed and *c* is the quantity of interest (e.g., CO_2 concentration, temperature or humidity). The overbar denotes the time average, and a prime denotes the fluctuation of an instantaneous value from this average. With the eddy covariance technique the measurements are carried out using fast-response instruments sampled typically at 10–20 Hz in order to cover the entire frequency range of turbulent variations. The EC method has become common during the most recent decade, and there have been various extensive research projects on CO_2 exchange in different ecosystems and in different areas in Europe (e.g., CARBOEURO-IP, CARBOEUROPE, GREENGRASS). Together with similar projects conducted on other continents (e.g., AMERIFLUX, FLUXNET-CANADA, ASIAFLUX), these projects form a global network of micrometeorological measurements, FLUXNET (Baldocchi *et al.*, 2001).

The main advantage of micrometeorological methods over the alternative enclosure methods is their ability to continuously measure the surface exchange of matter and energy. This makes it possible to study both the short-term variations (e.g., diurnal cycle) and the longterm balances. The micrometeorological measurements do not disturb the surface under investigation and provide fluxes on an ecosystem scale, thus avoiding the difficult up-scaling problems. The markedly smaller target area of chamber measurements, however, enables a spatially detailed study on different components of the ecosystem, which could complement the micrometeorological measurements.

The instrumentation used presently for the flux measurements include USA-1 sonic anemometer (METEK) and LI-7000 CO₂/H₂O analyzer (Li-Cor). The fluxes are calculated as block averages with a 30-min averaging period. A double rotation of the coordinate system is performed according to McMillen (1988). The lag between the time series resulting from the transport through the inlet tube is taken into account in the on-line calculation of the flux quantities by maximizing the absolute value of the covariance in question. The density correction related to the sensible heat flux is not needed (Rannik et al., 1997), but as the LI-7000 does not take into account humidity variations, a partial density correction was performed (Webb et al., 1980). Corrections for the systematic flux loss owing to the imperfect properties and setup of the sensors (insufficient response time, sensor separation, damping of the signal in the tubing and averaging over the measurement paths) were performed off-line using transfer functions with empirically-determined time constants (Aubinet et al., 2000). The data handling procedures have been explained in more detail by Aurela et al. (2002) and Aurela (2005).

Quality controlled flux data are also available from certain other Nordic forest sites of CARBOEUROPE network: a 80 years old beech stand in Sorø, Denmark; an average 100 years old mixed site Norunda, Sweden, consisting of Scots pine, Norway spruce and birch; a Scots pine stand in Hyytiälä, Finland planted in 1962.

In addition to the actual CO_2 exchange data the flux stations provide additional meteorological data which may be used for evaluating the representativeness of gridded meteorological data products at each flux measurement site. The most important parameters (air and soil temperature together with different radiation components) are available at all sites. More detailed parameter list is presented in Table 3.

1st Data document

Parameter	CO ₂ flux	H ₂ O flux	CH_4 flux	Sensible heat lfux	Snow depth	Prepicitation	Water table depth	PPFD	Reflected PPFD	Short wave (SW) radiation	Reflected SW radiation	Long wave (LW) radiation	Reflected LW radiation	Net radiation	Air temperature	Soil temperature (profile)	Air humidity	Soil moisture	Soil heat flux	Vegetation inventory data	Soil inventory data	Pressure	Wind
Sodankylä	Х	Х	-	Х	X	Х	-	X	X	X	X	X	-	X	X	X	X	Х	X	X	X	X	X
Kaamanen	X	X	-	Х	0	0	X	X	X		X	X	-	X	X	X	X	-	-	X	X	0	X
Kenttärova	X	X	-	X	X	0	-	X	X	X	X	X	X	X	X	X	X	X		-	-	0	X
Lompolojänkkä	х	Х	Х	Х	х	0	X	X	X	X	X	0	-	X	X	X	X	x	X	X	X	0	X
Alkkia, Karvia	Х	Х	-	Х	0	0	X	X	X	X	X	-	-	X	X	X	X	X	X	X	X	0	X
Kalevansuo, Loppi	Х	Х	-	Х	0	0	X	X	X	X	X	-	-	X	X	X	X	X	X	X	X	0	X
Jokioinen	Х	Х	-	Х	0	0	X	X	X	X	X	-	-	Х	Х	Х	Х	X	Х	Х	X	0	X

Table 3. Availability of different parameters at the flux measurements sites of Finnish Meteorological Institute

2.2.2 Concentration measurements

The CO₂ concentration measurements are conducted on top of Sammaltunturi hill (67°58'24"N, 24°06'58"E, 565m above sea level), about 100m above the treeline. This site is part of the Pallas-Sodankylä global GAW(Global Atmosphere Watch programme of World Meteorological Organization) station,. The Pallas region is characterized by arctic hills, mixed forest (Scots pine, Norway spruce, downy birch) and patches of wetlands and lakes.

The CO_2 concentration is measured using an infra-red gas analyzer by Li-Cor. The inlet for the CO_2 sampling line is located 7m above the ground. The measurements are calibrated once in every 2.5 h against three working standard gases and every 7.5 h also against a reference gas. These gases are calibrated every three months against WMO/CCL (NOAA) standards. In addition to the CO_2 concentration measurements which are used for model validation in this project, an extensive set of additional concentration and meteorological data are measured at Sammaltunturi (Table 4). The measurements are described in more detail by Hatakka et al. (2003).

Administration, USA.			
Component	Measurement method	Frequency	Period
Ozone	UV absorption	Continuous	1995 -
Sulphur dioxide	UV fluorescence	Continuous	1995 -
Nitrogen oxide + dioxide	Chemiluminescence	Continuous	1995, 1999-
Carbon dioxide	NDIR analyser	Continuous	1996 -
Carbon monoxide	GC/ Reduction gas analyser	Continuous	2004 -
CH ₄ , N ₂ O, SF ₆	GC	Continuous	2004 -
Hydrogen	Reduction gas analyser	Continuous	2006 -
Aerosol number concentration	Condensation Particle Counter	Continuous	1996 -
Aerosol number concentration	$Da > 0.5 \mu m$, Laser Particle Counter	Continuous	1996 -
Radon-222 (progeny)	Filter collection + beta counting	Continuous	1995 -
Radon-222	Delay chamber alpha counting (EML)	Continuous	2002 -
Black carbon	Aethalometer, light absorption	Continuous	1996 -
Aerosol scattering coefficient	Three wavelength integrating nephelometer	Continuous	2000 -
Aerosol size distribution	Differential mobility particle sizer	Continuous	2000 -
Volatile organic compounds	Flask sampling, GC analysis	2 / week	1994 -
CH ₄ , N ₂ O, SF ₆	NOAA flasks, GC analysis	1 / week	2002 -
Carbon monoxide, hydrogen	NOAA flasks, reduction gas analyser	1 / week	2002 -
Carbon dioxide	NOAA flasks, NDIR analyser	1 / week	2002 -
Wind speed and direction	6 m above ground	Continuous	1995 -
Temperature + rel. humidity	4 m above ground, Pt100 + HUMICAP	Continuous	1995 -
Pressure	2 m above ground, Vaisala DPA21	Continuous	1995 -
Visibility, present weather	Vaisala FD12P present weather sensor	Continuous	1995 -
Global radiation	Pyranometer	Continuous	1995 -
PAR	Photovoltaic detector	Continuous	1995 -

Table 4. Summary of measurements at Sammaltunturi station. Abbreviations: EML = Environmental Measurement Laboratory, USA; NOAA = National Oceanic and Atmospheric Administration, USA.

References

- Aubinet M., Grelle A., Ibrom A., Rannik Ü., Moncrieff J., Foken T., Kowalski A. S., Martin P. H., Berbigier P., Bernhofer Ch., Clement R., Elbers J. A., Granier A., Grünwald T., Morgenstern K., Pilegaard K., Rebmann C., Snijders W., Valentini R., and Vesala T., (2000) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Advances in Ecological Research, 30, 113–175.
- Aurela, M, Laurila, T. and Tuovinen, J.-P. (2002) Annual CO₂ balance of a subarctic fen in northern Europe: Importance of the wintertime efflux, J. Geophys. Res. 107, 4607, doi:10.1029/2002JD002055.
- Aurela, M. (2005) Carbon dioxide exchange in subarctic ecosystems measured by a micrometeorological technique. Contributions 51, Finnish Meteorological Institute, Helsinki, ISSN 0782-6117, pp. 132 (T. Vesala; University of Helsinki)
- Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, Ch., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B. E., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw U, K. T., Pilegaard, K.,

Schmid, H. P., Valentini, R., Verma, S., Vesala, T., Wilson, K., and Wofsy., S. (2001) FLUXNET: A new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society, 82, 2415–2434.

- Baldocchi, D. (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biology, 9, 479–492.
- Hatakka, J., T. Aalto, V. Aaltonen, M. Aurela, H. Hakola, M. Komppula, T. Laurila, H. Lihavainen, J. Paatero, K. Salminen and Y. Viisanen (2003). Overview of atmospheric research activities and results at Pallas GAW station. Boreal Environ. Res., 8, 365-384.
- McMillen, R. T. (1988) An eddy correlation technique with extended applicability to nonsimple terrain. Boundary Layer Meteorology, 43, 231–245.
- Rannik, Ü, Vesala, T., and Keskinen, R. (1997) On the damping of temperature fluctuations in a circular tube relevant to the eddy covariance measurement technique. Journal of Geophysical Research, 102, 12789–12794.
- Webb, E. K., Pearman, G. I., and Leuning, R. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85–100.

